General Drift Analysis with Tail Bounds
نویسندگان
چکیده
Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target state, e. g., the set of optimal solutions, without making additional statements on the distribution of this time. We address this lack by providing a general drift theorem that includes bounds on the upper and lower tail of the hitting time distribution. The new tail bounds are applied to prove very precise sharp-concentration results on the running time of a simple EA on standard benchmark problems, including the class of general linear functions. Surprisingly, the probability of deviating by an r-factor in lower order terms of the expected time decreases exponentially with r on all these problems. The usefulness of the theorem outside the theory of RSHs is demonstrated by deriving tail bounds on the number of cycles in random permutations. All these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Moreover, our theorem can be specialized into virtually all existing drift theorems with drift towards the target from the literature. Finally, user-friendly specializations of the general drift theorem are given. ∗A preliminary version of this paper appeared in the proceedings of ISAAC 2014 [27].
منابع مشابه
TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation
Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A ...
متن کاملDesign and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation
Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A ...
متن کاملSeasonal variations of catch composition of drift nets in Hormozgan waters (Persian Gulf)
The study was conducted to obtain some information about temporal and spatial variations of multifilament drift gillnet catch communities in coastal waters of Hormozgan Province (Persian Gulf) from October to March 2014. Totally, seven families were identified including Scombridae, Carangidae, Carcharhinidae, Sphyranidae, Stromatidae, Belonidae, and Pesttodidae with total biomass of 73.03%, 12....
متن کاملStochastic bounds for a single server queue with general retrial times
We propose to use a mathematical method based on stochastic comparisons of Markov chains in order to derive performance indice bounds. The main goal of this paper is to investigate various monotonicity properties of a single server retrial queue with first-come-first-served (FCFS) orbit and general retrial times using the stochastic ordering techniques.
متن کاملSharp Nonasymptotic Bounds on the Norm of Random Matrices with Independent Entries by Afonso
This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general subgaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1307.2559 شماره
صفحات -
تاریخ انتشار 2013